
DMTN-023: Pipeline Command-Line Drivers

Jim Bosch

Latest Revision: 2016-06-21

Introduction

This document provides a brief tutorial for using the LSST Software Stack’s main command-

line drivers. These form a sequence of high-level pipelines that can be used to process data

from raw images to multi-band catalogs derived from coadds. The pipeline is currently very

much at a prototype stage; the final LSST pipelines will be significantly more complex, and

there will be no need to manually execute several steps in order to run it. But even in its

current form, the pipeline is quite sophisticated, and it is already being used as the official

pipeline of the Hyper Suprime-Cam (HSC) survey on Subaru.

Using these pipelines requires an obs package that has been specialized for the instrument

that produced the data. These packages provide information about camera geometry,

detrending, filters, file formats, directory structure, and everything else that makes a camera

unique. Working obs packages already exist for HSC and Suprime-Cam (obs_subaru), SDSS

(obs_sdss), CFHT’s Megacam (obs_cfht), CTIO’s DECam (obs_decam), and LSST simulations

(obs_lsstSim). Creating a new obs package is a fair amount of work, and it’s well beyond the

scope of this tutorial. We’ll be using obs_subaru in this tutorial, as it’s currently the most

rigorously tested of the obs packages, and we’ll specifically refer to data that is available in the

ci_hsc package, though the same commands (with different image IDs) should work on any

dataset.

This document is intended to be read as a tutorial, not a reference – some features relevant to

all command-line scripts are described in only one of the sections below, as it’s expected that

the reader will be going through all of them.

Data Repository Setup

We will assume that the raw data and master calibration frames (e.g. flats) are both already

available. Most obs packages provide a way to build master calibration frames, but those

haven’t yet been standardized, and ci_hsc already includes everything we’ll need for later

processing. We’ll assume the location of ci_hsc is in the environment variable $CI_HSC_DIR .

https://dmtn-023.lsst.io/#change-record
https://github.com/lsst/obs_subaru
https://github.com/lsst/obs_sdss
https://github.com/lsst/obs_cfht
https://github.com/lsst/obs_decam
https://github.com/lsst/obs_lsstSim
https://github.com/lsst/obs_subaru
https://github.com/lsst/ci_hsc
https://github.com/lsst/ci_hsc
https://github.com/lsst/ci_hsc
Paul Price
More important than the amount of work is the required familiarity with the pipeline code: it is a black-belt operation.

Paul Price
You’ll get that automatically if you “setup -jr /path/to/ci_hsc”.
Now that I think of it, it’s strange that there’s nothing here on setting up the software — no “setup” commands at all.

We’ll start by creating a DATA directory, which will be the root of what we call a data

repository:

$ mkdir DATA

The files within this directory will be managed by an object called the butler

(lsst.daf.persistence.Butler), which abstracts all of our I/O; under normal circumstances, files

and directories in a data repository should only be accessed or modified using the butler. The

structure of the data repository is defined by another class called a mapper. Most mappers

are defined in an obs package, which lets us use the native organization for each instrument

(at least for raw data). To tell the butler which mapper a data repository uses, we create a

_mapper file in the root of the data repository:

$ echo "lsst.obs.hsc.HscMapper" > DATA/_mapper

We can then ingest the raw images into the data repository, using the ingestImages.py script

(implemented in lsst.pipe.tasks.IngestImagesTask):

$ ingestImages.py DATA $CI_HSC_DIR/raw/*.fits --mode=link

This adds symlinks for every file in the raw directory to the appropriate (butler-managed)

location in the DATA directory; you can also use other 77mode options to move, copy, or do

nothing (if the files are already in the right place). In addition, this creates a registry: a

database of all the raw images in the repository.

Calibration frames are typically stored in a separate data repository, and ci_hsc already

contains a complete one. We could just use this as-is, by passing 77calib=$CI_HSC_DIR/CALIB to

all of the downstream pipelines, but it will be easier to just create a symlink from this

directory into our data repository:

$ cd DATA

$ ln -s $CI_HSC_DIR/CALIB .

This location will automatically searched by pipelines when looking for calibration data. You

can ignore all of the warnings you may see in the logs about failures to find calibration

registries in other locations.

Some of our processing steps require an external reference catalog, which is currently

provided by an astrometry_net_data package that must be set up using EUPS (the same system

used to set up and declare LSST software versions). ci_hsc includes such a package. Before

https://github.com/lsst/ci_hsc
https://developer.lsst.io/build-ci/eups_tutorial.html
https://github.com/lsst/ci_hsc
Paul Price
I think you want to start here with a “cd /path/to/work” to show that you can do this anywhere on your system — it doesn’t have to be in the ci_hsc directory.

Paul Price
Apart from this, the choice of mapper and the details of a mapper should be completely transparent to the regular user.

Paul Price
I like to put the glob in quote marks because if you’re ingesting a LOT of images, you can blow past the shell’s line length limit. IngestImagesTask can handle a glob.

Paul Price
The registry is another implementation detail like the mapper, and the user can generally be blissfully unaware of its existence. It can be useful, though, for getting a listing of what data is available.

Paul Price
Space and time are the reasons ci_hsc contains master calibs rather than raw calibs: the raw calibs would expand the size of ci_hsc by maybe an order of magnitude, and building the master calibs would increase the already long runtime.

Paul Price
…will *be* automatically…

Paul Price
It may be worth pointing out that the catalog included in ci_hsc covers only the area of interest, and not the entire survey. The full ‘sdss-dr9-fink-v5b’ catalog is available for download though (we should stuff it into git-lfs).

first use, it must be declared:

$ eups declare astrometry_net_data sdss-dr9-fink-v5b+ci_hsc \
 -m none -r $CI_HSC_DIR/sdss-dr9-fink-v5b

and then (like any EUPS product) it must set up every time you open a new shell:

$ setup astrometry_net_data sdss-dr9-fink-v5b+ci_hsc

When we run pipelines, the outputs will go into a new data repository we call a rerun. By

default, reruns are created in a rerun/<rerun7name> subdirectory of the original data

repository. Reruns can be chained – a rerun from an early stage of processing may be used as

the input data repository for another stage.

Exposure Processing

The main command-line driver for processing individual exposure images is

singleFrameDriver.py , and like all of our command-line scripts, it’s implemented in a Task class

of the same name: lsst.pipe.drivers.SingleFrameDriverTask . We can run it on a single visit with

the following command:

$ singleFrameDriver.py DATA --rerun example1a --id visit=903334 --cores=4

As the 77cores=4 argument implies, this will parallelize the work over four cores (on the same

node). By setting the 77batch7type argument to “pbs” or “slurm”, singleFrameDriver.py can also

submit to a batch queue instead of running locally (you’ll have to pass some other options as

well, typically, to identify yourself to the queue). This sort of parallelization functionality is

shared by all of our very highest-level tasks: those that inherit from

lsst.ctrl.pool.BatchParallelTask . These usually live in the pipe_drivers package and have

names that end with “Driver”.

The other arguments here are common to all command-line tasks:

https://developer.lsst.io/build-ci/eups_tutorial.html
https://github.com/lsst/pipe_drivers
Paul Price
An alternative (used by ci_hsc itself, so if you “setup ci_hsc” you’ll get this for free) is to fake out eups by setting the appropriate environment variables.

Paul Price
BatchCmdLineTask.
BatchParallelTask is a specialisation of BatchCmdLineTask for pure bulk parallelisation.

The first argument (DATA above) is the path to the root data repository (the one that

contains raw data).

We use the 77rerun argument to give the rerun a name. The example above will put

the outputs in DATA/rerun/example1a .

We use the 77id argment to pass data IDs that indicate which data to process. There’s

a fairly complex syntax for specifying multiple data IDs in one 77id argument that

we’ll touch on later, but you can always also just use the 77id option multiple times.

Different instruments also have different data IDs for specifying raw data. HSC and

CFHT use {visit,ccd} , for instance, while LSST uses {visit,raft,sensor} .

singleFrameDriver.py always processes full visits, which is why we’ve left off the CCD part of

the data ID (actually, it processes as many of the CCDs in a visit that it can find in the registry

– you’ll note that ci_hsc doesn’t include them all).

Most of the work in singleFrameDriver.py is delegated to lsst.pipe.tasks.ProcessCcdTask , which

has its own command-line script, processCcd.py . You can call this directly if you just want to

process a CCD or two:

$ processCcd.py DATA --rerun example1b --id visit=903334 ccd=16^100 -j2

You’ll note that we’ve included the CCD part of the data ID here, and we’ve passed two CCD

IDs, separated by a ^ . We’ve also replaced the 77cores=4 argument with 7j2 .

lsst.pipe.tasks.ProcessCcdTask doesn’t inherit from lsst.ctrl.pool.BatchParallelTask , so it

doesn’t have the more sophisticated parallelization and batch submission features. But you

can still parallelize over multiple local cores by specifying the number with 7j .

Exposure-level processing includes doing basic detrending (ISR), PSF determination, cosmic

ray detection and interpolation, WCS and magnitude zeropoint fitting, and basic detection,

deblending, and measurement. It produces two main data products:

calexp

The calibrated exposure image for each CCD, including its PSF, WCS, and zeropoint in
addition to the image, mask, and variance pixels. This is an instance of
lsst.afw.image.ExposureF .

src

The catalog of single-epoch sources for each CCD. This is an instance of
lsst.afw.table.SourceCatalog .

https://github.com/lsst/ci_hsc
Paul Price
It seems to me that most people don’t know you can specify things other than visit and ccd for HSC, e.g., field, expTime, dateObs, proposal

Paul Price
That’s not accurate. singleFrameDriver.py processes CCDs. It’s essentially a ctrl_pool-ised version of processCcd.

Paul Price
All of the work.

We’ll cover how to read these datasets in Using the Butler. They’ll also be used by later

pipelines.

In order to move on to the next steps, we’ll want to first process data from multiple exposures.

To process all of the visits in the ci_hsc dataset, do:

$ singleFrameDriver.py DATA --rerun example1 --cores=4 \
 --id visit=903334..903338:2 --id visit=903342..903346:2 \
 --id visit=903986..903990:2 --id visit=904010^904014

We’ve used a few more forms of 77id syntax here:

X..Y:2 means “all IDs between X and Y (inclusive), incrementing by 2” (HSC visit

numbers are always even).

We’ve used ^ to join two visits we want to process, just as we used it with CCD IDs

previously.

We’ve passed 77id multiple times, which just results in processing everything listed in

all 77id options.

Since we’re only passing visit IDs here, using 77id multiple times is the same as using ^ .

Note that this isn’t true in general; 77idTvisit=X^YTccd=A^B processes both CCD A and CCD B

for each of visit X and visit Y.

Joint Calibration

After processing individual exposures, we’d ideally do a joint fit of their catalogs to generate

improved astrometric and photometric solutions. We call this procedure Joint Calibration.

Unfortunately, this stage isn’t quite up and running in the latest version of the LSST software

stack. We have two packages for joint calibration:

https://dmtn-023.lsst.io/#using-the-butler
https://github.com/lsst/ci_hsc

meas_mosaic was developed on a fork of the LSST software stack customized for HSC

processing and has not yet been fully reintegrated into the LSST mainline. We expect

this to happen very soon, but even when it is released meas_mosaic may only be

capable of processing HSC data.

jointcal is an in-development replacement for meas_mosaic that uses considerably

more efficient algorithms. It will eventually support all (or nearly all) cameras with an

obs package, but is not yet fully ready for production use. It already runs reliably on

CFHT data and has been run successfully on data from a few other cameras, but its

outputs have not yet been integrated into later stages of the pipeline, so the improved

calibrations it generates are simply lost.

Coaddition

Image coaddition requires two different kinds of data IDs to be specified, because it concerns

both the input images (the same exposure-level IDs that we saw in Exposure Processing) and

the output coadds, which are organized into tracts and patches on the sky (as well as their

filter). A tract is a large region containing many patches, and all patches within a tract share

the same WCS with only integer offsets between them.

A particular tract and patch definition is called a skymap, and these are implemented by

subclasses of lsst.skymap.BaseSkyMap . Full-sky and other large-area skymaps are created by

the makeSkyMap.py script, which can be passed a configuration file to set up the desired skymap

(most obs packages define a default skymap). Here, we’ll instead use what we call a discrete

skymap (lsst.skymap.DiscreteSkyMap), which is simply a single tract (with ID 0) at a particular

pointing. We can use the makeDiscreteSkyMap.py script to create one that automatically

encloses a collection of exposure-level images, by inspecting the bounding boxes and WCSs of

the calexp data products produced by exposure processing:

$ makeDiscreteSkyMap.py DATA --rerun example1:example2 \
 --id visit=903334..903338:2 --id visit=903342..903346:2 \
 --id visit=903986..903990:2 --id visit=904010^904014 \
 --config skyMap.projection="TAN"

We’ve used the exact same data IDs here that we used when running singleFrameDriver.py , to

ensure all of the images we’ve processed are included in the tract. There are two other new

features of command-line processing demonstrated here:

https://github.com/lsst/meas_mosaic
https://github.com/lsst/meas_mosaic
https://github.com/lsst/jointcal
https://github.com/lsst/meas_mosaic
https://dmtn-023.lsst.io/#exposure-processing
Paul Price
It might help to include the two PNGs from https://dev.lsstcorp.org/trac/ticket/2547

We’ve passed “example1:example2” as to the 77rerun option. This chains the reruns,

using “example1” as the input and “example2” as the new output. It’s often a good idea

to create a new rerun when you move on to a new stage of processing, so you can easily

reprocess just that stage or remove just that stage’s outputs. The last rerun in a chain

has access to all of the data products in other data repositories in its chain (this is on of

the big conveniences provided by the butler), so there’s essentially no downside to

creating a new rerun.

We’ve used the 77config (7c) option to customize the behavior of the task. All tasks

have a tree of configuration options (usually an enormous one), and you can dump the

full list to stdout by passing the 77show=config command-line option to any script. Like

77help , 77show=config doesn’t actually run the task, but you still need to provide the

first (root data repository) argument, because that determines the obs package used

and hence the values of some configuration options. You can also provide a file of

configuration overrides in the same format by using the 77configfile (7C) opton.

Config files are actually just Python files that are exec’d in a special context.

makeDiscreteSkyMap.py doesn’t have to do much work, so there’s no point in parallelizing it. It

will report the position of the skymap it creates and the number of patches in its logs; for the

ci_hsc dataset, that should be 3TxT3 .

Now that we’ve defined the skymap (formally the deepCoadd_skyMap data product), we can use

the coaddDriver.py script (lsst.pipe.drivers.CoaddDriverTask) to build a coadd. Coadds are built

patch-by-patch, and we can build a single patch (the middle one) for both of the filters in the

ci_hsc dataset with the following commands:

$ coaddDriver.py DATA --rerun example2 \
 --selectId visit=903334..903338:2 --selectId visit=903342..903346:2 \
 --id tract=0 patch=1,1 filter=HSC-R --cores=4

$ coaddDriver.py DATA --rerun example2 \
 --selectId visit=903986..903990:2 --selectId visit=904010^904014 \
 --id tract=0 patch=1,1 filter=HSC-I --cores=4

Unfortunately, coaddDriver.py isn’t clever enough to realize that a coadd in a particular filter

should only use visit images from that filter, so we have to manually split up the visits by filter

and run the command twice. We’ve used the 77selectId options to specify the input data IDs,

and 77id to specify the output data IDs. It’s okay to provide more input data IDs than actually

overlap the output patch; the task will automatically filter out non-overlapping CCDs. Like

singleFrameDriver.py , coaddDriver.py is based on lsst.ctrl.pool.BatchParallelTask , so we’re

using 77cores to specify the number of (local) cores to parallelize over. We’ve also just used

https://github.com/lsst/ci_hsc
https://github.com/lsst/ci_hsc
Paul Price
is *one* of

Paul Price
Is it worth mentioning the config override hierarchy here? Defaults, Task overrides, camera overrides, command-line overrides.

Paul Price
The config files are python files that are `exec`’d in a special context, configuring an externally-defined variable called `config`.

Paul Price
1,1 because it’s zero-indexed.

Paul Price
One man’s bug is another man’s feature. I used this during our recent production run to build mixed-filter stacks of i and i2.

Paul Price
So why not just use “—selectId field=STRIPE82L filter=HSC-R” for one and “—selectId field=STRIPE82L filter=HSC-I” for the other? Let the butler do the work for you!

Paul Price
Inaccurate. It’s a BatchPoolTask, which inherits from BatchCmdLineTask.

77rerunTexample2 to specify the rerun; this is now equivalent to 77rerunTexample1:example2

because we’ve already created the “example2” rerun and declared “example1” as its input

(once a data repository is created in a chain, it cannot be disassociated from that chain).

We can process multiple patches at once, but there’s no nice 77id syntax for specifying

multiple adjacent patches; we have to use ^ , which is a bit verbose and hard to read. Here are

the command-lines for processing the other 8 patches:

$ coaddDriver.py DATA --rerun example2 \
 --selectId visit=903334..903338:2 --selectId visit=903342..903346:2 \
 --id tract=0 patch=0,0^0,1^0,2^1,0^1,2^2,0^2,1^2,2 filter=HSC-R \
 --cores=4

$ coaddDriver.py DATA --rerun example2 \
 --selectId visit=903986..903990:2 --selectId visit=904010^904014 \
 --id tract=0 patch=0,0^0,1^0,2^1,0^1,2^2,0^2,1^2,2 filter=HSC-I \
 --cores=4

coaddDriver.py delegates most of its work to lsst.pipe.tasks.MakeCoaddTempExpTask ,

lsst.pipe.tasks.SafeClipAssembleCoadd , and lsst.pipe.tasks.DetectCoaddSourcesTask , which each

have their own scripts (makeCoaddTempExp.py , assembleCoadd.py , and detectCoaddSources.py ,

respectively), and like lsst.pipe.tasks.ProcessCcdTask , only support simple 7j parallelization.

The first of these builds the deepCoadd_tempExp data product, which is a resampled image in the

tract coordinate system for every patch/visit combination. The second combines these into

the coadd images themselves. The third actually starts the process of detecting sources on the

coadds; while this step fits better conceptually in Multi-Band Coadd Processing, it actually

modifies the coadd images themselves (by subtracting the background and setting a mask bit

to indicate detections). So we do detection as part of coaddition to allow us to only write one

set of coadd images, and to do so only once (though both sets of images are written by

default).

There are a few features of our coadds that are worth pointing briefly here:

https://dmtn-023.lsst.io/#multiband-coadd-processing
Paul Price
If you leave the “patch” off, it should iterate over all patches in the tract. Given that it the default configuration is to not clobber any existing warps or coadds, that’s equivalent to what you have.

Our coadds are not PSF-homogenized. Instead, we construct a PSF model on the coadd

by interpolating, resampling, and combining the single-exposure PSF models with the

appropriate weights. Eventually LSST will produce PSF-homogenized coadds as well,

and there are already some configuration options to enable this, but they’re currently

broken (resampling and PSF homogenization are done in the wrong order, so the

homogenization doesn’t quite work).

We do not do any direct outlier rejection when building our coadds, as this can do

serious damage to coadd PSFs. Instead, we find artifacts (e.g. satellite trails) by

comparing the difference between a coadd built with per-pixel outlier rejection and a

coadd built with no rejection whatsoever to detections done on single visits. Masking

artifacts found this way does much less damage to the PSFs (and it lets us flag objects

whose PSFs have been damaged), and it frequently works better than pixel-level

outlier rejection. It doesn’t work perfectly, however, and it’s not the approach we plan

to eventually use in LSST operations (we’ll instead find these artifacts on difference

images).

We ultimately plan to delay all background subtraction until after coaddition, while

using a procedure called background matching to ensure backgrounds are consistently

defined over groups of overlapping images. This isn’t working yet, but there are still a

lot of configuration options in the coaddition tasks for it.

The data products produced by coaddition are:

deepCoadd_tempExp

Resampled images for every patch/visit combination. These may be deleted after coadds
are built to save space. This is one of the few operations where direct filesystem
operations are necessary, however – there’s no way to delete files with the butler yet.

deepCoadd_calexp

Background-subtracted coadds with detection masks. Includes the coadded PSF model.

deepCoadd

Original coadds without detection masks and only any background subtraction done on
the individual images. Includes the coadded PSF model. These are not used by later
pipelines, and writing them can be disabled by passing the config option
assembleCoadd.doWrite=False to coaddDriver.py .

deepCoadd_det

A catalog of detections, done separately on each patch/band combination. As there is no
deblending or measurement of these detections, this catalog is not very useful directly, but
it is an important input to the next stage of processing.

Multi-Band Coadd Processing

Paul Price
Or they can be used as inputs to image subtraction.

LSST’s coadd processing pipeline is designed to produce consistent cross-band catalogs, in

terms of both deblending and measurement. After detecting separately in every band (which

is included in Coaddition), there are four steps, each of which is associated with its own

command-line task:

We merge detections across bands in a patch using

lsst.pipe.tasks.MergeCoaddDetectionsTask (mergeCoaddDetections.py). This produces a

single catalog data product, deepCoadd_mergeDet . Like deepCoadd_det , this catalog isn’t

useful on its own.

We deblend and measure objects independently in every band using

lsst.pipe.tasks.MeasureMergedCoaddSourcesTask (measureCoaddSources.py). This produces

the first generally-useful coadd catalog, deepCoadd_meas . Because the objects are

defined consistently across all bands, the rows of all of the per-band deepCoadd_meas

catalogs refer to the same objects, making them easy to compare.

We compare measurements across bands, selecting a “reference” band for every

object, using lsst.pipe.tasks.MergeMeasurementsTask (mergeCoaddMeasurements.py). This

produces the deepCoadd_ref catalog (one for all bands), which just copies a row from

the deepCoadd_meas corresponding to each object’s reference band, while adding a flag

to indicate which band was selected as the reference for that object. The rows of the

per-band deepCoadd_forced_src catalogs also line up with each other and those of the

deepCoadd_meas` and deepCoadd_ref catalogs.

We measure again in every band while holding the positions and shapes fixed at the

values measured in each object’s reference band, using

lsst.meas.base.ForcedPhotCoaddTask (forcedPhotCoadd.py). This produces the

deepCoadd_forced_src dataset, which provides the flux measurements that provide our

best estimates of colors.

Because our coadds are not PSF-homogenized, the forced coadd fluxes don’t produce

consistent colors unless some other form of PSF correction is applied. The PSF In production

settings, we use an external catalog of bright stars to set some masks when building coadds,

an fluxes and optional CModel fluxes (see Enabling Extension Packages) do provide this

correction, while other fluxes do not (and the CModel correction is only approximate; it

depends on how well the galaxy’s morphology can be approximated by a simple model).

There is no need to run these tasks independently; the multiBandDriver.py script

(lsst.pipe.drivers.MultiBandDriverTask) can be used to run them all in the appropriate order.

This is a lsst.ctrl.pool.BatchParallelTask , so all of the more sophisticated parallelization

https://dmtn-023.lsst.io/#coaddition
https://dmtn-023.lsst.io/#enabling-extension-packages
Paul Price
Should briefly mention how the reference band is chosen, and that it can change from object to object.

Paul Price
Formatting.

Paul Price
Doesn’t make sense here.

Paul Price
What are “an fluxes”?

Paul Price
Inaccurate. It’s a BatchPoolTask.

options are available. Before we we run it, however, we’ll have to create a small configuration

file.

In production settings, we use an external catalog of bright stars to set some masks when

building coadds, and when we measure, we use those masks to set flags on the objects. Since

we haven’t used that external catalog here, we need to turn off the flag-setting, and that’s a bit

more complex than we can do on the command line. Here is the content of the file; save it as

no7bright7object7mask.py :

config.measureCoaddSources.measurement.plugins["base_PixelFlags"].masksFpCenter.remove("BRIGHT_OBJECT")

config.measureCoaddSources.measurement.plugins["base_PixelFlags"].masksFpAnywhere.remove("BRIGHT_OBJECT")

$ multiBandDriver.py DATA --rerun example2:example3 \
 --id tract=0 patch=1^1 filter=HSC-R^HSC-I \
 --cores=2 -C no-bright-object-mask.py

We’ve run only the middle patch here. Because there’s so little data here, the outer patches

have a lot of area with no valid pixels, and coadd processing will fail if there is too much

missing area (unless you set some other configuration options we won’t go into here). You’ll

also see a lot of warnings about failed measurements even on the middle patch for the same

reason. Because we’re only running one patch, we’re also only using two cores, as that’s the

most the script will be able to make use of (because there are two filters).

Other Command-Line Tasks

The LSST includes a few more pipelines that aren’t covered in detail here. None of these are

lsst.ctrl.pool.BatchParallelTask s, so they don’t support sophisticated parallelization. The

most important ones are:

Paul Price
BatchCmdLineTask

Calibration product production, using the construct[Bias,Dark,Flat,Fringe].py scripts.

These have only been rigorously tested on HSC data, but they should work on most

other cameras as well.

Forced photometry on exposure images with the coadd reference catalog, using

forcedPhotCcd.py (lsst.meas.base.ForcedPhotCcdTask). This works, but we don’t have a

way to deblend sources in this mode of processing yet, so the results are suspect for

blended objects.

Difference imaging and transient source detection and characterization, using

imageDifference.py (lsst.pipe.tasks.ImageDifferenceTask). This has been run quite

successfully on several datasets by experts, but may require some configuration-tuning

to get high-quality results in general.

Enabling Extension Packages

Some of the most useful measurement algorithms are included in the LSST stack as optional

extension packages, and may not be enabled by default for a particular obs package (and even

if they are, a EUPS product may need to be explicitly setup).

These include:

Kron photometry, in the meas_extensions_photometryKron package.

Shear estimation using the HSM algorithms, in the meas_extensions_shapeHSM

package.

CModel galaxy photometry, in the meas_modelfit package.

With the exception of CModel, simply setting up these EUPS products will enable them when

processing HSC data (and CModel will be enabled in this way very soon). For other obs

packages, we recommend inspecting the config directory of obs_subaru to find configuration

files that can be used to enable these extensions (such a file exists for CModel as well, even

though it isn’t used by default).

Note that photometry extension algorithms should be enabled in both exposure processing

and coadd processing, even if coadd fluxes are the only ones of interest; we need to run the

algorithms on individual exposures to calculate their aperture corrections, which are then

coadded along with the PSFs to calculate coadd-level aperture corrections.

Using the Butler

https://developer.lsst.io/build-ci/eups_tutorial.html
https://github.com/lsst/meas_extensions_photometryKron
https://github.com/lsst/meas_extensions_shapeHSM
https://github.com/lsst/meas_modelfit
https://developer.lsst.io/build-ci/eups_tutorial.html
https://github.com/lsst/obs_subaru
Paul Price
These are BatchPoolTasks.
They require some obs package support and so won’t “just work” on “most other cameras”. We’re in the process of updating obs_decam so these will work (DM-5988).

Paul Price
What about meas_extensions_psfex?

Data products produced by the pipelines described above are best accessed using the butler.

Creating a butler in Python is easy; just pass the rerun directory to the

lsst.daf.persistence.Butler constructor:

fromTlsst.daf.persistenceTimportTButler
butlerT=TButler("DATA/rerun/example3")

We can then use the get method to extract any of the data products we’ve produced; for

example:

calexpT=Tbutler.get("calexp",Tvisit=903334,Tccd=16,Timmediate=True)
srcT=Tbutler.get("src",Tvisit=903334,Tccd=16,Timmediate=True)
skyMapT=Tbutler.get("deepCoadd_skyMap",Timmediate=True)
coaddT=Tbutler.get("deepCoadd_calexp",Ttract=0,Tpatch="1,1",Tfilter="HSC7I",Timmediate=True)
measT=Tbutler.get("deepCoadd_meas",Ttract=0,Tpatch="1,1",Tfilter="HSC7I",Timmediate=True)

Even though some of these are in the “example1” or “example2” rerun, we can access them all

through a single butler initialized to the “example3” root.

We’ve passed immediate=True to all of these to tell the butler to read and return objects

immediately; if we don’t, it’ll return a lazy-I/O proxy that mostly behaves like the object it

points at, but can occasionally be a little confusing (especially in terms of introspection).

We can also use the butler to get the filename of a data product by appending “_filename” to

the data product name, in case we actually do need to manipulate the filesystem directly:

filenameT=Tbutler.get("deepCoadd_tempExp_filename",Tvisit=903334,Ttract=0,Tpatch="1,1")[0]

Note that getting a *_filename data product actually returns a single-element list (in the

future, some data products may be split across multiple files, though none currently are).

Frequently Encountered Problems

Configuration and Software Version Changes

The first time a commmand-line task is run in a chain of data repositories, the versions of all of

the software it uses and the full configuration tree are saved to the output repositories. The

next time that task is run, the versions and configuration are compared against the saved

versions, and the task will fail if they’re not the same. This is usually desirable in production

environments, where it’s important that all data units be processed the same way. It would be

desirable to make the comparison only happen within one rerun, not a full rerun chain – but

this is not yet implemented.

In testing work, this behavior is frequently inconvenient, and the pipeline provides options to

override it: 77clobber7config and 77clobber7versions will simply overwite the existing

configuration and version information (respectively), and 77no7versions will prevent version

information from being written or tested entirely.

These tests can also be dangrous in parallel execution, as they can be subject to race

conditions (because one process can be testing for the existing of the file while another is

writing it). The built-in parallelization provided by the various

lsst.ctrl.pool.BatchParallelTask options and 7j are safe in this respect; these do the writing

and comparisons in a single process before starting the parallel processing. External wrappers

that run the same task in multiple processes may not be safe, especially if the 77clobber7*

operations are being used; the default behavior is protected from race conditions by using a

locking approach based on operations that are atomic on most filesystems, but the

77clobber7* options are not.

Clobbering and Skipping Outputs

Some command-line tasks (especially the *Driver.py tasks) test whether a data product exists

in the current rerun chain, and skip any processing that would be replace it. This is exactly the

behavior desired when a large job dies unexpected and you want to resume it. But it can be

very confusing when you actually want to re-do the processing (especially the fact that

processing is skipped if the output data product appears anywhere in the rerun chain, not just

the last rerun in the chain – this is another behavior we plan to change in the future).

Tasks with this behavior have configuration parameters to disable it, usually with names with

words like “overwrite”, “clobber”, or “skip”. Because these are configuration parameters (not

normal command-line options), changing them and then restarting processing in the same

rerun will trigger an error of the type described in the previous section.

https://dmtn-023.lsst.io/#configuration-and-software-version-changes
Paul Price
The workaround is to run the script with no —id arguments.

