
TDAstro: Community-driven light curve modeling for LSST
A.I. Malz, M. Dai, K. Malanchev, J. Kubica, O. Lynn, M. Tauraso, the LINCC-Frameworks Team

LSST Interdisciplinary Network for Collaboration and Computing (LINCC) Frameworks

Time-series forward modeling
infrastructure is a Rubin-wide need.

Realistic light curve simulations are essential to many
aspects of time-domain science with LSST, before,
during, and after the survey itself.

▶ Classifier stress-testing

▶Observing strategy optimization

▶ Forecasting for new physical theories

▶Validating analysis pipelines

▶ Simulation-based inference

▶ . . . and more!

A shared infrastructure with broad applicability
across time-domain phenomena that produces realistic
LSST-like light curves at scale with ease of use and
contribution would play a key role in enabling Rubin
community science!

LINCC-Frameworks builds software
infrastructure for LSST science.

Supported by Schmidt Sciences, the professional
software engineers and astronomy researchers of the
LINCC-Frameworks team build tools to broadly enable
LSST science beyond what Rubin alone can provide.

Figure: The Data to Software to Science Workshop
(arXiv:2208.02781) tasked domain experts across the Rubin
community with identifying cross-cutting software infrastructure
needs for the Rubin community, highlighting infrastructure
supporting time-domain simulation as a key need across fields.

TDAstro is designed to address technical needs for
time-series data across multiple science use cases,
guided by the following priorities.

▶Usability: easy to install, use, and contribute to

▶ Flexibility: supports inclusion of many models

▶ Integration: instruments, surveys, data types, etc.

▶ Robustness: self-consistent parameter sampling

▶ Efficiency: usable with and without supercomputer
resources

▶ Reliability: continuous integration, unit tests,
documentation

Structure of the TDAstro workflow

TDAstro supports end-to-end forward-modeling
pipelines as well as a la carte usage of individual
components to embed in external pipelines.

TD Physics LOS Physics Measurement

Figure: TDAstro’s modular structure enables users to build
end-to-end pipelines for many time-domain simulation applications.

▶Models refer to physical sources of light curve data
including the time-variable phenomena such as
supernovae, AGN, and variable stars, as well as static
contributions such as host galaxies for extragalactic
objects.

▶ Effects apply line-of-sight physics, such as Milky Way
extinction and redshifting of extragalactic sources, to
error-free fluxes at execution time.

▶Measurements of a source require the observing
strategy in LSST’s OpSim format and a
PassbandGroup of the desired survey’s photometric
filters’ transmission curves.

TDAstro usage demonstration: SN Ia as a case study
This poster illustrates the usage of TDAstro to simulate Type Ia supernovae (SNe Ia) as a
well-investigated extragalactic transient, but other models are available, with more in progress.

Intuitively build a graphical model for your physical source.

Parameters for a physical model are self-consistently drawn from a directed acyclic graph (DAG)
relating the user’s distributions for the physical model parameters. The physical model for the SN Ia
example can be represented as a DAG relating parameters about the transient, its host galaxy, and
other physics affecting its underlying time-dependent spectrum.

Figure: A user-defined model in terms of a directed acyclic graph relating parameters and distributions from which they
are sampled.

Chain modular nodes to define a hierarchical source model.

Users define models using familiar Python programming syntax. TDAstro’s flexible parameter
definitions enable users to build sophisticated models from simple Node components.

>> source = SALT2JaxModel(# User-selected model

t0=NumpyRandomFunc("uniform", # t0 parameter is a call to sample

low=t min, high=t max), # from a provided distribution.

x0=x0 func, # x0 and x1 parameters are calls to

x1=x1 func, # sample from user-defined functions.

c=0.01, # c parameter is a constant.

ra=NumpyRandomFunc("normal", # ra and dec parameters are defined

loc=host.ra, scale=0.01), # as calls to sample from provided

dec=NumpyRandomFunc("normal", # distributions that themselves depend

loc=host.dec, scale=0.01), # on other model node parameters.

redshift=host.redshift) # redshift parameter is from another model node.

Easily make OpSim-specified, survey-specific observations of a model.

An OpSim-formatted observing plan specifies photometric filters by name, but actual filters vary
across instruments even if they share names. While specifying the actual transmission curves
corresponding to the survey they want to simulate, users may also subselect observations from an
OpSim for faster processing by ignoring filters less relevant to their science case. TDAstro includes
transmission curves for upcoming surveys and will connect to archival filter sets for users to more
easily conduct cross-survey simulations.

>> opsim db = OpSim.from url(opsim url) # Load an OpSim from file or URL.

>> passband group = PassbandGroup.from preset(preset="LSST",

filters to load=["g", "r", "i", "z"]) # Specify passbands for survey.

>> filter mask = passband group.mask by filter(opsim db["filter"])

>> ops data = opsim db.filter rows(filter mask) # Isolate the desired bands.

Running a simulation with TDAstro is efficient and easy!

Instead of manually sampling parameters, passing a table of parameters into physical models, saving
oversampled light curves, then whittling them down and deriving errors according to an observing
plan, TDAstro enables users to perform a streamlined simulation without necessarily stopping at
intermediate steps, saving time and storage space.

>> lightcurves = simulate lightcurves(

source model, # Physical source and effects model

1 000, # Number of simulations

ops data, # Observations specification

passband group) # Passband data

TDAstro enables anyone to make a PLAsTiCC-like data challenge simulation tuned to their science
goals.

Figure: SN Ia light curves generated using TDAstro with PLAsTiCC priors (arXiv:1903.11756) under the
baseline v3.4 OpSim modified to only include LSST’s griz passbands.

A node chain for hyperparameters

Transient and variable rates and associations are key
components to generate and use simulated light curves.
In the SN Ia example, the transient inherits its redshift
from its host galaxy, so TDAstro can sample redshifts
from a realistic distribution.

>> pz node = PZFlowNode.from file(

path to trained flow,

node label="pznode")

>> host = SNIaHost(

ra=pz node.RA GAL,

dec=pz node.DEC GAL,

hostmass=pz node.LOGMASS,

redshift=NumpyRandomFunc("uniform",

low=0.1, high=0.6),

node label="host")

Adding observational effects to a model

Line-of-sight effects are key to realism of simulated
light curves, and their implementation has posed a
challenge to decentralized efforts at light curve
simulation. TDAstro provides a structure for such
effects to be applied to any light curve simulation as an
addition into the physical model.

>> model = SinWaveSource(

brightness=100.0, # Define the

frequency=20.0) # physical model.

>> ext effect = ExtinctionEffect(

extinction model="CCM89",

ebv=dust map node,

Rv=3.1) # Specify extinction effect.

>> model.add effect(ext effect)

Add the effect to the model.

TDAstro can thus serve as a central repository for
implementations of effects to reduce duplication of
effort across the community while making efficient
implementations available to everyone.

Testing realism of effects against DP1

TDAstro can be used to model how a hypothetical
source would have been observed in DP1.

Figure: Left: Actual unclassified transient observed during DP1
(arXiv:2506.23955). Right: Synthetic SN Ia made with TDAstro

using the DP1 OpSim.

The comparable observational errors demonstrate the
realism of the TDAstro simulation process.

How to get started and contribute

TDAstro is developed publicly on GitHub at
github.com/lincc-frameworks/tdastro.
API documentation and demos may be found on
ReadTheDocs at tdastro.readthedocs.io.
Get started with >> pip install tdastro.

TDAstro meets the Rubin community’s need for
easy-to-use software infrastructure to centralize
resources for light curve simulation. Its value to the
broader time-domain astronomical community grows
with the depth of its library of physical models and
observational effects — TDAstro needs you!

TDAstro is designed to make it easy to contribute your
models, effects, and survey definitions. Connect with
the TDAstro team by posting an issue on GitHub or
joining the #lincc-frameworks-tdastro channel of
the LSST-DA Slack workspace.

http://arxiv.org/abs/2208.02781
http://arxiv.org/abs/1903.11756
http://arxiv.org/abs/2506.23955
https://github.com/lincc-frameworks/tdastro
https://tdastro.readthedocs.io
https://discovery-alliance.slack.com/archives/C08HSEG1D0D

