All aboard! RAIL <3 TVS SN

Alex Malz (LINCC Frameworks @CMU)

LINCC Frameworks

LINCC Tech Talk

LINCC Frameworks

- Stands for LSST Interdisciplinary Network For Collaboration And Computing
- Schmidt Futures Foundation-funded collaboration between UW, CMU, LSSTC, U Pitt, and NOIRLab
- Enables LSST science by developing scalable and productionised software/algorithms in collaboration with professional software engineers
- Activities include workshops, hack weeks, and incubators

Highlights of <u>first LINCC Tech Talk</u>

Additional venues for collaboration:

- <u>Workshops</u> Work with LSST Science Collaborations to identify areas of need.
 - Data to Software to Science Workshop (March 2022)
 - Whitepaper summary of DSS: <u>arXiv:2208.02781</u>
- <u>Hackweeks</u> Provide tutorials and training in any new tools / frameworks.
- <u>Incubators</u> Scientists work with team to get their science applications working (open proposal process).
- LINCC Frameworks members joining Science Collaborations.

Workshop: From Data to Software to Science with the Rubin Observatory LSST

Workshop goals:

- Enabling *interactive development* of exciting scientific use cases for early LSST data, and identifying the common computational/technical challenges and enabling technologies associated with them.
- 2. Promoting the development of a broad and inclusive community of researchers engaged with LINCC Frameworks.

Paper: https://arxiv.org/abs/2208.02781

6	
	B

	Cross- matching	Photo-z	Selection functions	Time series	Image reprocessing	Image analysis
Cosmology	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	\checkmark
Extragalactic static	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark		$\checkmark\checkmark$	\checkmark
Extragalactic transient	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$	\checkmark	\checkmark
Extragalactic variable	$\checkmark\checkmark$	\checkmark	\checkmark	$\checkmark\checkmark$	\checkmark	\checkmark
Local Universe transient & variable	$\checkmark\checkmark$		\checkmark	$\checkmark\checkmark$		
Local Universe static	$\checkmark\checkmark$		\checkmark		\checkmark	\checkmark
Solar system	\checkmark		$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$

Table 1. Table highlighting the connection between scientific and technical areas discussed at the workshop. Rows are science areas while columns are for infrastructure capabilities. A double checkmark $(\checkmark \checkmark)$ signifies that some infrastructure capability is essential to enable a particular scientific area, while a single checkmark (\checkmark) signifies that the infrastructure capability would enhance or expand scientific discovery within that area but is not necessary to enable all of it.

Redshift Assessment Infrastructure Layers (RAIL) <u>github.com/LSSTDESC/RAIL</u>

A starting point for a photo-z framework

But first, some context (from DESC PZ onboarding slides)

Schmidt, Malz & Soo, et al. (2020) OVERVIEW

Motivation

To identify the best photo-*z* PDF estimation code for DESC pipelines Data

DC1 was a DC2 precursor mock data set

N-body-based cosmological redshifts & photometry

<u>Methods</u>

Controlled comparison of 11+ photo-z PDF estimation codes Evaluated performance by all standard metrics (and then some) Baseline test before introducing realistic conditions

Experimental control: All estimators shared perfect prior information

- A representative training set for machine learning codes
- The true SED templates for model-fitting codes

10

Even under perfect prior information, no method yields perfect photo-*z* PDFs.

The experimental control returns the training set ESC redshift distribution regardless of galaxy photometry.

Traditional metrics of photo-*z* PDFs favor the pathological experimental control.

12

Schmidt, Malz & Soo, et al. (2020) conclusions and next steps

Each photo-*z* posterior estimator is distinguished by its implicit prior.

No photo-*z* posterior estimator is perfect, even with perfect prior I information.

Traditional metrics of photo-*z* posterior performance are inappropriate.

The implicit prior must be isolated to use photo-*z* posteriors for DESC cosmology.

We must probe the response of estimators under realistically imperfect prior information.

To evaluate principled metrics, we must compare estimates to true photo-*z* posteriors.

We must probe the response of estimators under realistically imperfect prior information.

To evaluate principled metrics, we must compare estimates to true photo-*z* posteriors.

RAIL is a modular toolkit for building end-to-end pipelines for estimating and stress-testing photo-z data products.

Major themes:

RAIL's design facilitates controlled experiments to characterize estimators and mitigate shortcomings.

RAIL is designed to be extensible beyond DESC needs.

The implicit prior must be isolated to use photo-*z* posteriors for DESC cosmology.

We must probe the response of estimators under realistically imperfect prior information.

To evaluate principled metrics, we must compare estimates to true photo-*z* posteriors.

RAIL.creation forward models mock data

Generates mock redshifts and photometry and the probability space p(z, data) so posteriors p(z | data) and likelihoods p(data | z) are accessible Includes both empirical and physical modeling back-ends Supports realistically complex systematics (degradation) modeling, including: emission/absorption line confusion, magnitude cuts (shortcuts to surveys), observing condition/sky variation, magnitude errors over time,

The implicit prior must be isolated to use photo-*z* posteriors for DESC cosmology.

We must probe the response of estimators under realistically imperfect prior information.

To evaluate principled metrics, we must compare estimates to true photo-*z* posteriors.

RAIL.estimation establishes a shared API

for photo-z (PDF) algorithms

Currently includes BPZ, Delight, FlexZBoost, GPz, KNN (two implementations), pzflow, SOM (two implementations), Provides straightforward process to wrap more estimators Supports several I/O formats via tables_io with more coming soon! (Also includes summarizers of ensemble redshift distribution)

The implicit prior must be isolated to use photo-*z* posteriors for DESC cosmology.

We must probe the response of estimators under realistically imperfect prior information.

To evaluate principled metrics, we must compare estimates to true photo-*z* posteriors.

RAIL.evaluation supports flexible metrics of photo-z (PDF) estimates

Currently includes: Bias, IQR, MAD, outlier rate, PIT plus KS, AD, CvM of PIT, CDE loss (and more via <u>gp</u>) Provides straightforward process to add more metrics

Actively seeking to implement xSC metrics!

LINCCXRAILXTVS SN

Discussion: next steps for making RAIL useful for TVS

(And everyone is invited to join <u>#desc-pz-rail</u> on the LSSTC Slack!)