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Motivation

Results for Rubin Filters

¢ Developing an ML tool to help discover and follow-up kilonova (KN) candidates
identified by ZTF and Rubin.

Obtain MSE of 0.22 and R? of 0.68 for our test data across all 6 filters.

* Convert low latency data from IGWN to light curves in ZTF/Rubin filters using
an LSTM network.
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Results for ZTF Filters

Obtain MSE of 0.19 and R? of 0.82 for our test data across all 3 filters.
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Fig.2: Predicted (solid lines) and truth (dashed lines) light curves in ZTF filters using our trained model for
arandom KN in our test set. Shaded regions show 3-o uncertainties.
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Fig.3: Predicted mean (solid lines) and 3-o uncertainities (shaded regions) of KN light curves associated
with $240627c using low latency alert data.
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Fig.4: Predicted (solid lines) and ground truth (dashed lines) light curves in Rubin filters.
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Fig.5: The best-predicted light curve with an MSE of 0.017 is on the top. The worst predicted light curve,
with an MSE of 4 in the middle. MSE as a function of KN time is on the bottom.

Future work

We are developing a reinforcement learning agent to optimize follow-up
observations. It accounts for survey randomness and evaluates full light
curves to make the best use of limited resources.
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