I am trying to process some VR band DECam images from raw images with flats and bias images. I appear to be making good postISRCCD
images. Ingest, bias and flat processing, certification, isr
and characterizeImage
tasks appear to run properly, but I have an error on the calibrate
task. The yaml file I call is
description: The AP template building pipeline specialized for DECam
instrument: lsst.obs.decam.DarkEnergyCamera
imports:
- location: $AP_PIPE_DIR/pipelines/ProcessCcd.yaml
exclude:
- isr
- location: $AP_PIPE_DIR/pipelines/DarkEnergyCamera/RunIsrWithCrosstalk.yaml
tasks:
characterizeImage:
class: lsst.pipe.tasks.characterizeImage.CharacterizeImageTask
config:
refObjLoader.ref_dataset_name: 'ps1_pv3_3pi_20170110'
calibrate:
class: lsst.pipe.tasks.calibrate.CalibrateTask
config:
photoCal.match.referenceSelection.magLimit.fluxField: 'i_flux'
photoCal.match.referenceSelection.magLimit.maximum: 22.0
astromRefObjLoader.ref_dataset_name: 'cal_ref_cat'
#astromRefObjLoader.anyFilterMapsToThis: 'phot_g_mean' # not yet implemented in gen3, DM-27843
python: |
config.astromRefObjLoader.filterMap = {}
config.astromRefObjLoader.filterMap['g'] = 'phot_g_mean'
config.astromRefObjLoader.filterMap['r'] = 'phot_g_mean'
config.astromRefObjLoader.filterMap['i'] = 'phot_g_mean'
config.astromRefObjLoader.filterMap['z'] = 'phot_g_mean'
config.astromRefObjLoader.filterMap['y'] = 'phot_g_mean'
config.astromRefObjLoader.filterMap['VR'] = 'phot_g_mean'
photoRefObjLoader.ref_dataset_name: 'ps1_pv3_3pi_20170110'
photoCal.photoCatName: 'ps1_pv3_3pi_20170110'
connections.astromRefCat: 'cal_ref_cat'
connections.photoRefCat: 'ps1_pv3_3pi_20170110'
run with pipetask run -j30 --register-dataset-types -d "exposure IN (855899, 855900, 855901) and detector IN (10)" -b . -i DECam/raw/all,DECam/calib,DECam/calib/cert-biases,DECam/calib/cert-flats,tmp/isr-prep -o tmp/calibrate_2 -p yamls/calibrate.yaml
.
cal_ref_cat
is Gaia DR2. I have also tried using pan-starrs and Gaia DR1 with the same error. The error is
Process task-8:
Traceback (most recent call last):
File "/epyc/users/smotherh/lsst_latest/conda/miniconda3-py38_4.9.2/envs/lsst-scipipe-0.5.0/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap
self.run()
File "/epyc/users/smotherh/lsst_latest/conda/miniconda3-py38_4.9.2/envs/lsst-scipipe-0.5.0/lib/python3.8/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/epyc/users/smotherh/lsst_latest/stack/miniconda3-py38_4.9.2-0.5.0/Linux64/ctrl_mpexec/21.0.0-26-gb7643ca+642d343ffb/python/lsst/ctrl/mpexec/mpGraphExecutor.py", line 127, in _executeJob
quantumExecutor.execute(taskDef, quantum, butler)
File "/epyc/users/smotherh/lsst_latest/stack/miniconda3-py38_4.9.2-0.5.0/Linux64/ctrl_mpexec/21.0.0-26-gb7643ca+642d343ffb/python/lsst/ctrl/mpexec/singleQuantumExecutor.py", line 103, in execute
self.runQuantum(task, quantum, taskDef, butler)
File "/epyc/users/smotherh/lsst_latest/stack/miniconda3-py38_4.9.2-0.5.0/Linux64/ctrl_mpexec/21.0.0-26-gb7643ca+642d343ffb/python/lsst/ctrl/mpexec/singleQuantumExecutor.py", line 274, in runQuantum
task.runQuantum(butlerQC, inputRefs, outputRefs)
File "/epyc/users/smotherh/lsst_latest/stack/miniconda3-py38_4.9.2-0.5.0/Linux64/pipe_tasks/21.0.0-72-gffa78901+5340526ff2/python/lsst/pipe/tasks/calibrate.py", line 622, in runQuantum
outputs = self.run(**inputs)
File "/epyc/users/smotherh/lsst_latest/stack/miniconda3-py38_4.9.2-0.5.0/Linux64/pipe_base/21.0.0-18-g546cdbd+4e75b35dac/python/lsst/pipe/base/timer.py", line 157, in wrapper
res = func(self, *args, **keyArgs)
File "/epyc/users/smotherh/lsst_latest/stack/miniconda3-py38_4.9.2-0.5.0/Linux64/pipe_tasks/21.0.0-72-gffa78901+5340526ff2/python/lsst/pipe/tasks/calibrate.py", line 722, in run
astromRes = self.astrometry.run(
File "/epyc/users/smotherh/lsst_latest/stack/miniconda3-py38_4.9.2-0.5.0/Linux64/pipe_base/21.0.0-18-g546cdbd+4e75b35dac/python/lsst/pipe/base/timer.py", line 157, in wrapper
res = func(self, *args, **keyArgs)
File "/epyc/users/smotherh/lsst_latest/stack/miniconda3-py38_4.9.2-0.5.0/Linux64/meas_astrom/21.0.0-4-g591bb35+9e2f6ff707/python/lsst/meas/astrom/astrometry.py", line 152, in run
res = self.solve(exposure=exposure, sourceCat=sourceCat)
File "/epyc/users/smotherh/lsst_latest/stack/miniconda3-py38_4.9.2-0.5.0/Linux64/pipe_base/21.0.0-18-g546cdbd+4e75b35dac/python/lsst/pipe/base/timer.py", line 157, in wrapper
res = func(self, *args, **keyArgs)
File "/epyc/users/smotherh/lsst_latest/stack/miniconda3-py38_4.9.2-0.5.0/Linux64/meas_astrom/21.0.0-4-g591bb35+9e2f6ff707/python/lsst/meas/astrom/astrometry.py", line 191, in solve
loadRes = self.refObjLoader.loadPixelBox(
File "/epyc/users/smotherh/lsst_latest/stack/miniconda3-py38_4.9.2-0.5.0/Linux64/meas_algorithms/21.0.0-20-g8cd22d88+eb66f50d9f/python/lsst/meas/algorithms/loadReferenceObjects.py", line 396, in loadPixelBox
return self.loadRegion(outerSkyRegion, filtFunc=_filterFunction, epoch=epoch, filterName=filterName)
File "/epyc/users/smotherh/lsst_latest/stack/miniconda3-py38_4.9.2-0.5.0/Linux64/meas_algorithms/21.0.0-20-g8cd22d88+eb66f50d9f/python/lsst/meas/algorithms/loadReferenceObjects.py", line 464, in loadRegion
raise RuntimeError("No reference tables could be found for input region")
RuntimeError: No reference tables could be found for input region
Early in the processing, I get a warning about VR filter of
py.warnings WARN: /epyc/users/smotherh/lsst_latest/stack/miniconda3-py38_4.9.2-0.5.0/Linux64/obs_base/21.0.0-50-gfd878b2+50d1e73eb4/python/lsst/obs/base/formatters/fitsExposure.py:502: UserWarning: Reading file:
///astro/store/epyc2/projects2/smotherh/DEEP/Process_Raw/DECam/calib/constructed-flats/20210512T011045Z/flat/VR/VR_DECam_c0007_6300.0_2600.0/flat_DECam_VR_VR_DECam_c0007_6300_0_2600_0_S22_DECam_calib_constructed
-flats_20210512T011045Z.fits with data ID {instrument: 'DECam', detector: 10, physical_filter: 'VR DECam c0007 6300.0 2600.0', ...}: filter label mismatch (file is None, data ID is FilterLabel(band="VR", physica
l="VR DECam c0007 6300.0 2600.0")). This is probably a bug in the code that produced it.
warnings.warn(f"Reading {self.fileDescriptor.location} with data ID {self.dataId}: "
which makes me think I may be handling the VR filter processing incorrectly somehow. Are there any suggestions on how I might troubleshoot this issue?